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Motivation: recently funded SciDAC-2 project on
stress corrosion cracking (SCC)

• Corrosion is complex technical 
problem (in e.g., advanced power
generation) with annual economic
impact equal to 3% of GNP

• USC, Harvard, CSUN, Purdue,
LANL, LLNL collaboration

• 5-year goal: develop hierarchical
petascale simulation framework to
address SCC from first principles

• LLNL role: develop new capability 
to perform ultra-scale atomistic
simulations (106–1012 atoms) with
quantum-mechanical accuracy

SciDAC focus: advanced simulation capability development

Materials: d-electron transition 
metals and alloys, e.g., NiAl,
at high temperatures

Simulation framework for SCC



Bridging the gap from quantum mechanics to 
large scale atomistic simulation
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• Scientific challenge: bridge the length and time scale gap from
quantum mechanics (~ 100 atoms) to ultra-scale atomistic simulation
(billions of atoms) with quantum-level accuracy

• Strategy: Direct coupling of quantum simulations (QMD) and MD
simulations with quantum-based multi-ion potentials from model
generalized pseudopotential theory (MGPT)
! ATLAS enabling development of a robust hybrid QMD-MD/MGPT

simulation capability for complex d-electron metals and alloys

! Grand challenge goal: simulate 109 atoms at high temperature
in prototype systems (e.g., Mo, NiAl) via MD/MGPT with accuracy 
of direct QMD simulation on 102 atoms

Scientific challenge and strategy

…QMD MD/MGPT QMD MD/MGPT 

time

Optimized
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Scope of work and progress to date

1) Development and testing of an efficient parallel QMD-MD/MGPT 
simulation code: P3MD

2) Development and application of robust simulation algorithm to
optimize MGPT potentials
! first-generation algorithm established and applied to Mo prototype

! excellent set of potentials obtained that accurately predict
atomic structure of liquid Mo

3) Establishment of a QMD test data base and corresponding test
simulations on derived MGPT potentials: transferability
! extensive two-phase Mo melt simulations

4) Billion-atom MD/MGPT demonstration simulations with optimized
potentials 

completed

moving toward optimization

in progress

still to be completed



Hybrid QMD-MD/MGPT simulation code: P3MD
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P3MD = Petascale, Plane-wave, Pseuodopotential Molecular Dynamics

• QMD mode: P3MD implements first-principles pseudopotential method
! plane wave basis for wavefunction expansion
! treats 3-9 valence electrons per atom for d-electron transition metals
! treats 50-250 transition-metal atoms with 1-10 k points

• MD/MGPT mode: P3MD implements model generalized pseudopotential theory



Efficient usage of HPC resources

Parallelization of P3MD code:
DFT forces: k points, energy bands, plane waves in reciprocal space

spread across CPUs in optimal manner, with custom FFT
used to move between real and reciprocal space

MD: performed on single CPU, assuming N is small (< 250)

Tests on QMD melt simulations show excellent efficiency



Atlas utilization on grand challenge projects

This project

Average utilization by this project:  300,000 CPU/hours per week



Quantum-based MGPT multi-ion potentials
Total-energy expansion within DFT quantum mechanics
! MGPT potentials derived from systematic simplification of first-principles results 
! standard analytic method: canonical d bands (universal form)
! fast matrix method: non-canonical d bands (materials specific form)
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Importance of electron temperature Tel: three limits
(i) Tel = 0 and T = Tion: low-temperature solid

! standard assumption in theory, even for high T
! adequate for most simple sp-bonded materials

(ii) Tel = Tion = T: high-temperature solid and liquid

! important in d-electron transition metals due to 
to high, phase-dependent density of electronic 
states (DOS)

! also advantageous: allows one to leverage rich
finite-T QMD data

! in MGPT, include through explicit T-dependent
potentials:

(iii)  Tel >> Tion: ultra fast laser heating of solid or liquid

DOS in bcc & liquid Mo



QMD-MD/MGPT simulation strategy

…QMD MD/MGPT QMD MD/MGPT 
Optimized
potentials

Snapshot QMD data:
! energies Ei
! stress Si
! forces Fi

Accumulated QMD data:
! thermal energy Eth
! thermal pressure Pth
! atomic structure g(r), b(%)
! electronic structure N(E)

Optimization considerations:
(i) details of MGPT potentials functional form

! canonical vs non-canonical d bands
! finite-T systematic improvements

(ii) choice of constraining data
! snapshot vs accumulated QMD data
! additional static solid-phase data

Various options have been
tried and a first-generation 
simulation scheme adopted



Adopted first-generation simulation scheme

MGPT potentials:
! non-canonical d bands
! explicit modeling of Tel

contributions to Ael

Constraining data:
! blend of static bcc data at Tel + snapshot QMD

energies in liquid from 20-30 configurations 
! predict accumulated QMD properties as test

Tel=0 MGPT

Tel=10,000 MGPT

MD

QMD

Instantaneous thermal pressure

Simulation conditions: N = 54 atoms, Tion= 10,000 K,  ( = 105.1 au

QMD MD

Tel=0 MGPT

Tel=10,000 MGPT

Instantaneous thermal energy
Smooth QMD + MD/MGPT transition and rapid convergence:



First-generation Mo potentials accurately predict 
atomic structure of liquid

Simulation conditions: N = 54 atoms, Tion= 10,000 K, ( = 105.1 au

Radial distribution function g(r) Bond-angle distribution function b(%)

Similar results have been obtained over a wide
range of volumes at both 5000 and 10,000 K



Snapshot of Mo QMD melt: 
T = 3500 K and P = 35 GPa

Two-phase baseline QMD melt simulation in Mo

bcc solid liquid

128 atoms 128 atoms• Parameters of simulation

! N = 256 atoms (minimum size)
! constant T, constant N(
! 1-2 ps runs
! 1 k point

• Diagnostic strategy

! monitor order parameter (op)
rather than interface position

! for fixed T, do runs at several
volumes of interest

op

time

(1

(2

(3

T < Tmelt

T = Tmelt

T > Tmelt



Two-phase QMD melt analysis: an example
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Same methodology applies to MD/MGPT melt simulations



Mo melt curve: sensitive test of MGPT potentials

For MD/MGPT results:

(c) = canonical d bands

(nc) = non-canonical d bands

Additional simulated
melt points from QMD 
and MD/MGPT with 
current potentials are
in progress
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Conclusions and expected scientific impact
• A new hybrid QMD-MD/MGPT simulation algorithm has been
developed to obtain quantum-level accurate interatomic potentials
! excellent first-generation MGPT potentials have been developed

in a Mo prototype

! in the coming year, we expect to complete algorithm optimization,
potential transferability testing, and initial large scale applications

If we are successful …
• New predictive science tool for materials extending continuously

from nanometers to micrometers
! essential to SciDAC goal of first-principles SCC multiscale modeling

! permit fundamental investigations beyond current capabilities

• Will enable accurate advanced programmatic applications
! non-equilibrium multiphase equations of state with phase kinetics

! dynamic strength and failure modeling up to micron length scales


